Verify algebraically if the function is odd, even, or neither. Need # 6 help

As given by the question
(6)
There are given that the function:
[tex]h(x)=x^9+1[/tex]Now,
For the even:
[tex]h(-x)=h(x)[/tex]So,
From the function
[tex]\begin{gathered} h(x)=x^9+1 \\ h(-x)=(-x)^9+1 \\ =x^9+1 \\ h(-x)\ne h(x) \end{gathered}[/tex]So, the given function is not even.
Then,
For odd:
[tex]\begin{gathered} h(-x)=-h(x) \\ h(-x)=(-x)^9+1 \\ h(-x)=-(x)^9+1 \\ h(-x)\ne-h(x) \end{gathered}[/tex]So, the given function is not odd.
Hence, the given function is neither odd nor even.