Respuesta :

Answer:

The value of a is;

[tex]a=5[/tex]

Explanation:

Given a quadratic equation;

[tex]y=ax^2+bx+c[/tex]

The values of x and y are given in the table.

to get the value of c,

at x =0, y=2.

let us substitute into the equation;

[tex]\begin{gathered} y=ax^2+bx+c \\ 2=a(0)^2+b(0)+c \\ 2=c \\ c=2 \end{gathered}[/tex]

Since, we have the value of c. the equation becomes;

[tex]y=ax^2+bx+2[/tex]

let us proceed to find a and b.

at x=-1, y=16

also at x=1,y=-2

let us substitute the two values;

[tex]\begin{gathered} atx=-1,y=16 \\ y=ax^2+bx+2 \\ 16=a(-1)^2+b(-1)+2 \\ 16=a-b+2 \\ a-b=16-2 \\ a-b=14\text{ -------1} \\ at\text{ x=1, y=-2} \\ y=ax^2+bx+2 \\ -2=a(1)^2+b(1)+2 \\ -2=a+b+2 \\ a+b=-2-2 \\ a+b=-4\text{ ------2} \end{gathered}[/tex]

To get a add equation 1 and 2 together;

[tex]\begin{gathered} a-b+a+b=14-4 \\ a+a-b+b=10 \\ 2a=10 \\ a=\frac{10}{2} \\ a=5 \end{gathered}[/tex]

Therefore, the value of a is;

[tex]a=5[/tex]