Note: Enter your answer and show all the steps that you use to solve this problem in the space provided. Find all cube roots of the complex number 64(cos(219°)+i sin(219°)Leave answers in polar form and show all work.

Note Enter your answer and show all the steps that you use to solve this problem in the space provided Find all cube roots of the complex number 64cos219i sin21 class=

Respuesta :

Explanation

We must find the complex cubic roots of the complex number:

[tex]z=64\cdot(\cos(219\degree)+i\sin(219\degree)).[/tex]

We identify the modulus r and angle θ as:

• modulus r = 64,

,

• angle θ = 219°.

The k = 0, 1, ..., n - 1 roots of a complex number are given by:

[tex]w_k=\sqrt[n]{r}\cdot\lbrack\cos(\frac{\theta+k\cdot360\degree}{n})+i\cdot\sin(\frac{\theta+k\cdot360\degree}{n})][/tex]

In this case three roots, we have k = 0, 1, 2. Using the data and formula from above, we have:

[tex]\begin{gathered} w_0=\sqrt[3]{64}\cdot\lbrack\cos(\frac{219\degree+0\cdot360\degree}{3})+i\cdot\sin(\frac{219\degree+0\cdot360\degree}{3})]=4\cdot\lbrack\cos(73\degree)+i\cdot\sin(73\degree)], \\ w_1=\sqrt[3]{64}\cdot\lbrack\cos(\frac{219\degree+1\cdot360\degree}{3})+i\cdot\sin(\frac{219\degree+1\cdot360\degree}{3})]=4\cdot\lbrack\cos(193\degree)+i\cdot\sin(193\degree)], \\ w_2=\sqrt[3]{64}\cdot\lbrack\cos(\frac{219\degree+2\cdot360\degree}{3})+i\cdot\sin(\frac{219\degree+2\cdot360\degree}{3})]=4\cdot\lbrack\cos(313\degree)+i\cdot\sin(313\degree)]. \end{gathered}[/tex]Answer

There are three cubic roots:

[tex]\begin{gathered} w_0=4\cdot\lbrack\cos(73\degree)+i\cdot\sin(73\degree)] \\ w_1=4\cdot\lbrack\cos(193\degree)+i\cdot\sin(193\degree)] \\ w_2=4\cdot\lbrack\cos(313\degree)+i\cdot\sin(313\degree)] \end{gathered}[/tex]