Sets B and C are subsets of the universal set U.These sets are defined as follows.U= { 1, 3, 5, 6, 7}B={ 1, 3, 6}C= { 1, 3, 5 }Find the following sets.Write your answer in roster form or as Ø.(a) B' Ụ C' = (b) B' n C =

Respuesta :

Given: Sets B and C are subsets of the universal set U.

These sets are defined as follows-

[tex]\begin{gathered} U=\left\{1,3,5,6,7\right\} \\ B=\left\{1,3,6\right\} \\ C=\left\{1,3,5\right\} \end{gathered}[/tex]

Required: To determine the following sets-

[tex]\begin{gathered} B^{\prime}\cup C^{\prime} \\ B^{\prime}\cap C \end{gathered}[/tex]

Explanation: The complement of a set A with the universal set U is defined as-

[tex]A^{\prime}=U-A[/tex]

Hence, the complement of set B is-

[tex]\begin{gathered} B^{\prime}=U-B \\ =\left\{1,3,5,6,7\right\}-\left\{1,3,6\right\} \\ =\lbrace5,7\rbrace \end{gathered}[/tex]

Similarly, the complement of set C is-

[tex]\begin{gathered} C^{\prime}=\left\{1,3,5,6,7\right\}-\left\{1,3,5\right\} \\ =\lbrace6,7\rbrace \end{gathered}[/tex]

Now,

[tex]\begin{gathered} B^{\prime}\cup C^{\prime}=\lbrace5,7\rbrace\cup\lbrace6,7\rbrace \\ =\lbrace5,6,7\rbrace \end{gathered}[/tex]

Similarly-

[tex]\begin{gathered} B^{\prime}\cap C=\lbrace5,7\rbrace\cap\left\{1,3,5\right\} \\ =\lbrace5\rbrace \end{gathered}[/tex]

Final Answer: (a)-

[tex]B^{\prime}\cup C^{\prime}=\lbrace5,6,7\rbrace[/tex]

(b)-

[tex]B^{\prime}\cap C=\lbrace5\rbrace[/tex]