Here is the directions my teacher told me “ do not use your calculator to multiple by or find inverses of 2x2 matrices. You must know the formula for inverting those and be able to apply it.”

Here is the directions my teacher told me do not use your calculator to multiple by or find inverses of 2x2 matrices You must know the formula for inverting tho class=

Respuesta :

Statement Problem: Find;

[tex]\begin{bmatrix}{a_1} & {a_2} & {a_3} \\ {b_1} & {b_2} & {b_3} \\ {} & {} & \end{bmatrix}[/tex]

If;

[tex]3(\begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{a_1} & {a_2} & {a_3} \\ {b_1} & {b_2} & {b_3} \\ {} & {} & \end{bmatrix}[/tex]

Solution:

First, we find the difference of the matrices in the bracket;

[tex]\begin{gathered} \begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{-4-2} & {0-2} & {1-(-2)} \\ {0-3} & {2-(-6)} & {3-0} \\ {} & {} & \end{bmatrix} \\ \begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix} \end{gathered}[/tex]

Then, we multiply the result above by 3;

[tex]\begin{gathered} 3(\begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix})=3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix}) \\ 3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{3(-6)} & {3(-2)} & {3(3)} \\ {3(-3)} & {3(8)} & {3(3)} \\ {} & {} & \end{bmatrix} \\ 3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{-18} & {-6} & {9} \\ {-9} & {24} & {9} \\ {} & {} & \end{bmatrix} \end{gathered}[/tex]

Hence, the solution is;

[tex]\begin{gathered} a_1=-18,a_2=-6,a_3=9_{} \\ b_1=-9,b_2=24,b_3=9 \end{gathered}[/tex]