select and order the steps to prove the special product pattern for the square of a binomial

SOLUTION
Given the binomial expression
[tex](a+b)^2[/tex]Step 1: write out the expansion
[tex](a+b)^2=(a+b)(a+b)[/tex]Step2: Carry out the expansion by multiplying and removing the bracket
[tex](a+b)(a+b)=a(a+b)+b(a+b)_{}[/tex]Then we have
[tex](a+b)(a+b)=a^2+ab+ab+b^2[/tex]Step3: add the middle terms
[tex]a^2+2ab+b^2[/tex]Similarly for
[tex](a-b)^2[/tex]Then we have
[tex](a-b)^2=(a-b)(a-b)=(a^2-ab-ab+b^2)=a^2-2ab+b^2[/tex]Hence the ordered followed the