4. Compute the equation of the regression line for a dataset that has the statistics given below. Round the values of a and b to two decimal places.¯x= 11, sx= 1, ¯y= 306, sy= 106, r= -0.62The regression line is ˆy= x+

4 Compute the equation of the regression line for a dataset that has the statistics given below Round the values of a and b to two decimal placesx 11 sx 1 y 306 class=

Respuesta :

Given data

[tex]\bar{x}=11,\text{ S}_y=106,\text{ S}_X=1,\bar{\text{ y}}=306,r=-0.62[/tex]

Let us solve for a and b

Solving for b

The formula to use is,

[tex]b=r\frac{S_y}{S_x}[/tex][tex]\begin{gathered} b=-0.62\times\frac{106}{1}=-0.62\times106=-65.72 \\ \therefore b=-65.72 \end{gathered}[/tex]

Solving for a

The formula to solve for a is,

[tex]a=\bar{y}-b\bar{x}[/tex]

Therefore,

[tex]\begin{gathered} a=306-(-65.72)\times11 \\ a=306-(-722.92)=306+722.92=1028.92 \\ \therefore a=1028.92 \end{gathered}[/tex]

The formula for the regression line is,

[tex]\hat{y}=bx+a[/tex]

Substituting the values of a and b

[tex]\hat{y}=-65.72+1028.92[/tex]

Hence, the regression line is

[tex]\hat{y}=-65.72x+1028.92[/tex]