Respuesta :

Given:

The mass of the sample is,

[tex]\begin{gathered} m=100\text{ kg} \\ =100\times10^3\text{ g} \end{gathered}[/tex]

The temperature changes from

[tex]90\text{ }\degree C\text{ to 20 }\degree C[/tex]

The heat rejected is,

[tex]\begin{gathered} H=20\text{ kcal} \\ =20\times10^3\text{ cal} \end{gathered}[/tex]

To find:

The specific heat capacity of the metal

Explanation:

Let the specific heat capacity is 'c.'

The amount of heat rejected by the metal is,

[tex]H=mc\Delta t[/tex]

Here, the temperature change is

[tex]\begin{gathered} \Delta t=90-20 \\ =70\text{ }\degree C \end{gathered}[/tex]

Substituting the values we get,

[tex]\begin{gathered} 20\times10^3=100\times10^3\times c\times70 \\ c=\frac{20\times10^3}{100\times10^3\times70} \\ c=2.86\times10^{-3}\text{ cal/g.}\degree C \end{gathered}[/tex]

Hence, the specific heat capacity is,

[tex]2.86\times10^{-3}\text{ cal/g.}\degree C[/tex]