Given:
The mass of the sample is,
[tex]\begin{gathered} m=100\text{ kg} \\ =100\times10^3\text{ g} \end{gathered}[/tex]The temperature changes from
[tex]90\text{ }\degree C\text{ to 20 }\degree C[/tex]The heat rejected is,
[tex]\begin{gathered} H=20\text{ kcal} \\ =20\times10^3\text{ cal} \end{gathered}[/tex]To find:
The specific heat capacity of the metal
Explanation:
Let the specific heat capacity is 'c.'
The amount of heat rejected by the metal is,
[tex]H=mc\Delta t[/tex]Here, the temperature change is
[tex]\begin{gathered} \Delta t=90-20 \\ =70\text{ }\degree C \end{gathered}[/tex]Substituting the values we get,
[tex]\begin{gathered} 20\times10^3=100\times10^3\times c\times70 \\ c=\frac{20\times10^3}{100\times10^3\times70} \\ c=2.86\times10^{-3}\text{ cal/g.}\degree C \end{gathered}[/tex]Hence, the specific heat capacity is,
[tex]2.86\times10^{-3}\text{ cal/g.}\degree C[/tex]