find the sum of the measures of the interior angle of each convex polygon. show work.

To find the sum of the measures of the interior angle of each convex polygon:
The sum of the measures of the interior angle formula for n-gon is,
[tex](n-2)\times180^{\circ}[/tex]4) Given: 54 gon
[tex]\begin{gathered} (54-2)\times180^{\circ}=52\times180 \\ =9360^{\circ} \end{gathered}[/tex]5) Given: 19-gon
[tex]\begin{gathered} (19-2)\times180^{\circ}=17\times180^{\circ} \\ =3060^{\circ} \end{gathered}[/tex]6) Given: 292-gon
[tex]\begin{gathered} (292-2)\times180^{\circ}=290\times180^{\circ} \\ =52200^{\circ} \end{gathered}[/tex]7) Given: 5-gon
[tex]\begin{gathered} (5-2)\times180^{\circ}=3\times180^{\circ} \\ =540^{\circ} \end{gathered}[/tex]