The function y=f(x)y is graphed below. What is the average rate of change of the function f(x) on the interval −5≤x≤−4?

Given:
[tex]\begin{gathered} y=f(x) \\ \\ -5\leq x\leq-4 \end{gathered}[/tex]Find-: Average rate of change.
Sol:
The average rate of change of f(x) int the closed interval [a,b] is:
[tex]\frac{f(b)-f(a)}{b-a}[/tex]Here,
[tex][a,b]=[-5,-4][/tex][tex]\begin{gathered} f(b)=f(-4)=-15 \\ \\ f(a)=f(-5)=-15 \end{gathered}[/tex]
So average rate of change is:
[tex]\begin{gathered} =\frac{f(b)-f(a)}{b-a} \\ \\ =\frac{-15-(-15)}{-4-(-5)} \\ \\ =\frac{-15+15}{-4+5} \\ \\ =\frac{0}{1} \\ \\ =0 \end{gathered}[/tex]Average rate of change in given interval is 0.