Respuesta :

Given the identity:

[tex](\csc ^2x-1)\sin x=\cos ^2x\csc x[/tex]

We will prove the identity as follows

Starting from the left-hand side

First, use the rule of reciprocal

[tex](\csc ^2x-1)\sin x=(\frac{1}{\sin^2x}-1)\sin x[/tex]

Second, use the rule of quotient

[tex]=(\frac{1-\sin^2x}{\sin^2x})\sin x[/tex]

Third, use the Pythagorean theorem

[tex]=\frac{\cos^2x}{\sin^2x}\cdot\sin x[/tex]

Fourth, Multiply using the rule algebra

[tex]=\frac{cos^2x}{\sin x}[/tex]

Finally, use the rule of reciprocal

[tex]=\cos ^2x\csc x[/tex]

Which will be matched with the right-hand side.