Respuesta :

Given the expression:

[tex]4\sqrt[]{-20}[/tex]

To simplify the expression you have to use complex numbers.

Let "i" be equal to the square root of -1:

[tex]i=\sqrt[]{-1}[/tex]

Then, you can rewrite the expression as follows:

[tex]\begin{gathered} 4\sqrt[]{20\cdot(-1)} \\ 4\sqrt[]{20}\cdot\sqrt[]{-1} \\ 4i\sqrt[]{20} \end{gathered}[/tex]

Now that you have the square root of a positive number you can simplify it:

First, factor 20, you can write it as the product between 4 and 5:

[tex]4i\cdot\sqrt[]{4\cdot5}[/tex]

Distribute the square root and simplify:

[tex]\begin{gathered} 4i\cdot\sqrt[]{4}\cdot\sqrt[]{5} \\ 4i\cdot2\cdot\sqrt[]{5} \\ (4\cdot2)i\sqrt[]{5} \\ 8i\sqrt[]{5} \end{gathered}[/tex]

The simplified expression is:

[tex]8i\sqrt[]{5}[/tex]