Answer:
x=-1, y=-8.
Explanation:
Given the system of equations:
[tex]\begin{gathered} 8x+y=-16 \\ -3x+y=-5 \end{gathered}[/tex]To eliminate y, subtract:
[tex]\begin{gathered} 8x-(-3x)=-16-(-5) \\ 8x+3x=-16+5 \\ 11x=-11 \end{gathered}[/tex]Divide both sides by 11:
[tex]\begin{gathered} \frac{11x}{11}=-\frac{11}{11} \\ x=-1 \end{gathered}[/tex]Next, substitute the value of x into any of the equations to solve for y:
[tex]\begin{gathered} 8x+y=-16 \\ 8(-1)+y=-16 \\ -8+y=-16 \\ y=-16+8 \\ y=-8 \end{gathered}[/tex]The solution to the system of equations is x=-1, y=-8.