The center of the circle below is at P. If the angle < APB measures 49 °, and the radius is 13 cm., find the length of the arc AB in cm.. (round to the nearest tenth)

Given:
• m∠APB = 49 degrees
,• Radius = 13 cm
Let's find the length of arc AB.
To find the length of arc AB, apply the formula:
[tex]L=2\pi r*\frac{\theta}{360}[/tex]Where:
r is the radius = 13 cm
θ is the central angle = 49 degrees
Thus, we have:
[tex]\begin{gathered} L=2\pi *13*\frac{49}{360} \\ \end{gathered}[/tex]Solving further:
[tex]\begin{gathered} L=\frac{2\pi *13*49}{360} \\ \\ L=\frac{26\pi *49}{360} \\ \\ L=\frac{1274\pi}{360} \\ \\ L=11.1\text{ cm} \end{gathered}[/tex]Therefore, the length of arc AB is 11.1 cm.
• ANSWER:
d. 11.1 cm