The function g is defined by the following rule.g (x) =x-3

The given rule for the function is:
[tex]g(x)=x-3[/tex]Substitute the first value of x into the rule:
[tex]\begin{gathered} g(x)=x-3;x=-4 \\ \Rightarrow g(-4)=-4-3 \\ \Rightarrow g(-4)=-7 \end{gathered}[/tex]Enter -7 in the first row under g(x).
Substitute the second value of x into the rule:
[tex]\begin{gathered} g(x)=x-3;x=-3 \\ \Rightarrow g(-3)=-3-3 \\ \Rightarrow g(-3)=-6 \end{gathered}[/tex]Enter -6 into the second row under g(x).
Substitute the third value of x into the rule:
[tex]\begin{gathered} g(x)=x-3;x=0 \\ \Rightarrow g(0)=0-3 \\ \Rightarrow g(0)=-3 \end{gathered}[/tex]Enter -3 into the third row under g(x).
Substitute the fourth value of x into the rule:
[tex]\begin{gathered} g(x)=x-3;x=4 \\ \Rightarrow g(4)=4-3 \\ \Rightarrow g(4)=1 \end{gathered}[/tex]Enter 1 into the fourth row under g(x).
Substitute the fifth value of x into the rule:
[tex]\begin{gathered} g(x)=x-3;x=5 \\ \Rightarrow g(5)=5-3 \\ \Rightarrow g(5)=2 \end{gathered}[/tex]Enter 2 into the fifth row under g(x).
The complete table is shown below: