Two equally charged, 2.307 g spheres are placed with 3.606 cm between their centers. When released, each begins to accelerate at 216.783 m/s2. What is the magnitude of the charge on each sphere? Express your answer in microCoulombs.

Respuesta :

Given:

The equal charges are placed at a distance of

[tex]\begin{gathered} r=3.606\text{ cm} \\ =3.606\times10^{-2}\text{ m} \end{gathered}[/tex]

The mass of each charge is,

[tex]\begin{gathered} m=2.307\text{ g} \\ =2.307\times10^{-3}\text{ kg} \end{gathered}[/tex]

The acceleration of each charge is,

[tex]a=216.783\text{ m/s}^2[/tex]

To find:

The magnitude of the charge on each sphere

Explanation:

The electric force due to the charges supplies the acceleration of the charges. The electric force is,

[tex]\begin{gathered} F=\frac{kq^2}{r^2} \\ F=\frac{9\times10^9\times q^2}{(3.606\times10^{-2})^2} \end{gathered}[/tex]

Here, k is the Coulomb constant.

We can write,

[tex]\begin{gathered} F=ma \\ \frac{9\times10^9\times q^2}{(3.606\times10^{-2})^2}=2.307\times10^{-3}\times216.783 \\ q^2=\frac{2.307\times10^{-3}\times216.783\times(3.606\times10^{-2})^2}{9\times10^9} \\ q^2=7.23\times10^{-14} \\ q=\pm2.69\times10^{-7}\text{ C} \\ q=\pm0.269\text{ }\mu C \end{gathered}[/tex]

Hence, the magnitude of each sphere is,

[tex]\pm0.269\text{ }\mu C[/tex]