Respuesta :

Given:

• Ray ST bisects ∠VSU

,

• m∠VST = (5x - 3) degrees

,

• m∠VSU = (9x + 3) degrees

Let;s solve for m∠VST.

Let's first sketch a figure which represents this situation:

Since ST bisects angle VSU, it means ST divides angle VSU exactly by half.

Thus, we have:

m∠VST = m∠TSU

m∠VSU = m∠VST + m∠TSU

m∠VSU = 2(m∠VST)

Now, input the terms into the equation:

[tex]9x+3=2(5x-3)[/tex]

Let's solve for x.

Apply distributive property to the right side of the equation:

[tex]\begin{gathered} 9x+3=2(5x)+2(-3) \\ \\ 9x+3=10x-6 \end{gathered}[/tex]

• Subtract 10x from both sides:

[tex]\begin{gathered} 9x-10x+3=10x-10x-6 \\ \\ -x+3=-6 \end{gathered}[/tex]

• Subtract 3 from both sides:

[tex]\begin{gathered} -x+3-3=-6-3 \\ \\ -x=-9 \end{gathered}[/tex]

• Divide both sides by -1:

[tex]\begin{gathered} \frac{-x}{-1}=\frac{-9}{-1} \\ \\ x=9 \end{gathered}[/tex]

Now, to solve for m∠VST, subsitute 9 for x in (5x - 3).

[tex]\begin{gathered} m\angle VST=5x-3 \\ \\ m\angle VST=5(9)-3 \\ \\ m\angle VST=45-3 \\ \\ m\angle VST=42^o \end{gathered}[/tex]

Therefore, the measure of angle VST is 42 degrees.

ANSWER:

42 degrees

Ver imagen TankI375588