Respuesta :

When two quantities (x , y) varies directly, means they increase together or decrease together, we use one of these rules

[tex]\begin{gathered} y=kx \\ OR \\ \frac{y_1}{y_2}=\frac{x_1}{x_2} \end{gathered}[/tex]

In the question, y varies directly with square root x, so the rule will be

[tex]\frac{y_1}{y_2}=\frac{\sqrt{x_1}}{\sqrt{x_2}}[/tex]

Since y is 48 when x = 144, then

[tex]\begin{gathered} y_1=48 \\ x_1=144 \end{gathered}[/tex]

We need to find y when x = 79

[tex]\begin{gathered} y_2=? \\ x_2=79 \end{gathered}[/tex]

Let us substitute them in the rule

[tex]\frac{48}{y_2}=\frac{\sqrt{144}}{\sqrt{79}}[/tex]

By using cross multiplication

[tex]\begin{gathered} \sqrt{144}\times y_2=48\times\sqrt{79} \\ \sqrt{144}y_2=426.633332 \end{gathered}[/tex]

Divide both sides by square root 144

[tex]\begin{gathered} \frac{\sqrt{144}y_2}{\sqrt{144}}=\frac{426.633332}{\sqrt{144}} \\ y_2=35.552777 \end{gathered}[/tex]

Round it to 2 decimal places

[tex]y_2=35.55[/tex]

To check your answer look at the values of x and y

Since x decreased from 144 to 79, y also decreased from 48 to 35.55

So your answer is right

The value of y is 35.55