It’s asking to find the instantaneous acceleration at 10 seconds

At constant velocity, the acceleration is zero.
Acceleration is the change in velocity with time
i) Find the average acceleration of this object during the following time intervals
a) 0 s to 5 s
Since the velocity is constant at 0s to 5s, average acceleration = 0m/s²
b) 5.0 s to 15 s
[tex]\begin{gathered} a=\frac{v_2-v_1}{t_2-t_1} \\ a=\frac{8-(-8)}{15-5} \\ a=\frac{16}{10} \\ a=1.6\text{ m/s}^{2} \end{gathered}[/tex]c) 0 s to 20 s
[tex]\begin{gathered} a=\frac{v_2-v_1}{t_2-t_1} \\ a=\frac{8-(-8)}{20-0} \\ a=\frac{16}{20} \\ a=0.8\text{ m/s}^{2} \end{gathered}[/tex]ii) Find the instantaneous at the following times
a) 2.0 s
Since the velocity is contant at 2.0s, the instantaneous acceleration is 0 m/s²
b) 10 s
To find the equation represented by the line from 5 s to 15 s, select two points on the line
(5, -8) and (15, 8)
[tex]\begin{gathered} \text{The slope, m = }\frac{v_2-v_1}{t_2-t_1} \\ m=\frac{8-(-8)}{15-5} \\ m=\frac{16}{10} \\ m=1.6\text{ m/s}^{2} \end{gathered}[/tex][tex]\begin{gathered} v-v_1=m(t-t_1) \\ v-(-8)=1.6(t-5) \\ v+8=1.6t-8 \\ v=1.6t-8-8 \\ v=1.6t-16 \end{gathered}[/tex]The instantaneous velocity is:
v(t) = 1.6t - 16
[tex]\begin{gathered} a(t)=\frac{dv}{dt} \\ a(t)=1.6 \\ a(10)=1.6\text{ m/s}^{2} \end{gathered}[/tex]Instantaneous acceleration at 10 seconds = 1.6 m/s²