Respuesta :

To rotate a shape 180º about the origin you have to switch the coordinates and invert their signs following the rule:

[tex](x,y)\to(-y,-x)[/tex]

First, you have to determine the coordinates of each vertex od ΔEFG

E(-3,-1)

F(2,1)

G(1,-4)

Next, apply the rule to the coordinates of each vertex to rotate the triangle:

[tex]E(-3,-1)\to E^{\prime}\lbrack-(-1),-(-3)\rbrack=E^{\prime}(1,3)[/tex][tex]F(2,1)\to F^{\prime}(-1,-2)[/tex][tex]G(1,-4)\to G^{\prime}\lbrack-(-4),-1\rbrack=G^{\prime}(4,-1)[/tex]

So, the coordinates of ΔE'F'G' are

E'(1,3)

F'(-1,-2)

G'(4,-1)