Solution:
In an input/output table, all outputs are 0, regardless of the input.
This means that
The value of x can be
[tex]\begin{gathered} (-\infty,\infty) \\ y=0 \end{gathered}[/tex]Step 1:
Try the first function, we will have
[tex]\begin{gathered} y=0(x),x=1,x=-2 \\ y=0(1)=0 \\ y=0(-2)=0 \end{gathered}[/tex]Step 2:
Try the second function
[tex]\begin{gathered} y=x,x=0 \\ y=0 \\ y=x,x=-2 \\ y=-2 \end{gathered}[/tex]Step 3:
Try the third function
[tex]y=\frac{x}{0}[/tex]This function is said to be undefined as the denominator is equal to 0
Step 4:
Try the fourth equation
[tex]\begin{gathered} y=\frac{0}{x},x-1,x=2,x=0 \\ y=\frac{0}{0}=undefined \\ y=\frac{0}{-1}=0 \\ y=\frac{0}{2}=0 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow y=0x[/tex]