In an input/output table, all outputs are 0, regardless of the input. What could the function equation be? Select all that apply.options:y = 0 xy = xy = x\0y = 0\x

Respuesta :

Solution:

In an input/output table, all outputs are 0, regardless of the input.

This means that

The value of x can be

[tex]\begin{gathered} (-\infty,\infty) \\ y=0 \end{gathered}[/tex]

Step 1:

Try the first function, we will have

[tex]\begin{gathered} y=0(x),x=1,x=-2 \\ y=0(1)=0 \\ y=0(-2)=0 \end{gathered}[/tex]

Step 2:

Try the second function

[tex]\begin{gathered} y=x,x=0 \\ y=0 \\ y=x,x=-2 \\ y=-2 \end{gathered}[/tex]

Step 3:

Try the third function

[tex]y=\frac{x}{0}[/tex]

This function is said to be undefined as the denominator is equal to 0

Step 4:

Try the fourth equation

[tex]\begin{gathered} y=\frac{0}{x},x-1,x=2,x=0 \\ y=\frac{0}{0}=undefined \\ y=\frac{0}{-1}=0 \\ y=\frac{0}{2}=0 \end{gathered}[/tex]

Hence,

The final answer is

[tex]\Rightarrow y=0x[/tex]