Given:
[tex]y=4-\frac{3}{5}x[/tex]The x-intercept is the point where the line crosses the x-axis.
At x-intercept, the y-coordinate is always zero.
To find the x-intercept, set y=0 and solve for x.
Thus, we have:
[tex]0=4-\frac{3}{5}x[/tex]Multiply through by 5 to eliminate the fraction:
[tex]\begin{gathered} 0(5)=4(5)-\frac{3x}{5}\ast5 \\ \\ 0=20-3x \end{gathered}[/tex]Subtract 20 from both sides:
[tex]\begin{gathered} 0-20=20-20-3x \\ \\ -20\text{ = -3x} \end{gathered}[/tex]Divide both sides by -3:
[tex]\begin{gathered} \frac{-20}{-3}=\frac{-3x}{-3} \\ \\ \frac{20}{3}=x \end{gathered}[/tex]Therefore the x-intercept is:
[tex]\frac{20}{3}[/tex]ANSWER:
[tex]\frac{20}{3}[/tex]