Respuesta :

Given:

[tex]y=4-\frac{3}{5}x[/tex]

The x-intercept is the point where the line crosses the x-axis.

At x-intercept, the y-coordinate is always zero.

To find the x-intercept, set y=0 and solve for x.

Thus, we have:

[tex]0=4-\frac{3}{5}x[/tex]

Multiply through by 5 to eliminate the fraction:

[tex]\begin{gathered} 0(5)=4(5)-\frac{3x}{5}\ast5 \\ \\ 0=20-3x \end{gathered}[/tex]

Subtract 20 from both sides:

[tex]\begin{gathered} 0-20=20-20-3x \\ \\ -20\text{ = -3x} \end{gathered}[/tex]

Divide both sides by -3:

[tex]\begin{gathered} \frac{-20}{-3}=\frac{-3x}{-3} \\ \\ \frac{20}{3}=x \end{gathered}[/tex]

Therefore the x-intercept is:

[tex]\frac{20}{3}[/tex]

ANSWER:

[tex]\frac{20}{3}[/tex]