Respuesta :

Given the functions:

[tex]\begin{gathered} f(x)=4x+5 \\ g(x)=2x-3 \end{gathered}[/tex]

We will find the composite function (f o g)(x)

So, we will substitute the function (f) into the function (f) as follows:

[tex](f\circ g)(x)=4\cdot(2x-3)+5[/tex]

Simplifying the function:

[tex]\begin{gathered} (f\circ g)(x)=8x-12+5 \\ \\ (f\circ g)(x)=8x-7 \end{gathered}[/tex]

The resulted function is a linear function, the domain is all real numbers

[tex]\text{Domain}=(-\infty,\infty)[/tex]

So, the answer will be:

(f o g)(x) = 8x - 7

Domain: (-∞, ∞)