Respuesta :

Problem

Find the zeros by using the quadratic formula and tell whether the solutions are real or imaginary. F(x)=x^2–2x–14.

Solution

For this case we can do the following:

x^2–2x–14.

We can use the quadratic formula given by:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Where a =1, b= -2, c= -14

And replacing we got:

[tex]x=\frac{2\pm\sqrt[]{4-(4)(1)(-14)}}{2\cdot1}[/tex]

And solving we got:

[tex]x=\frac{2\pm\sqrt[]{60}}{2}=1\pm\sqrt[]{15}[/tex]

And the two solutions are:

x1= 1 +sqrt(15)

x2= 1- sqrt(15)