Respuesta :

We know that diagonals bisect each other perpendicularly, so we can draw the following picture:

Then, from the right triangle FED,

we have that

[tex]x^2+16^2=28^2[/tex]

which gives

[tex]x^2=784-256[/tex]

then

[tex]\begin{gathered} x^2=528 \\ x=\sqrt[]{528} \\ x=\sqrt[]{16\cdot33} \\ x=4\sqrt[]{33} \end{gathered}[/tex]

Therefore,

[tex]EF=x=4\sqrt[]{33}[/tex]

Since EC is twice EF, then

[tex]EC=8\sqrt[]{33}[/tex]

Finally, we know that all sides are equal, this means that

[tex]BC=ED=28=CD=BE[/tex]

In summary, the answers are:

[tex]\begin{gathered} CD=28 \\ FD=\frac{32}{2}=16 \\ EF=4\sqrt[]{33} \\ EC=8\sqrt[]{33} \end{gathered}[/tex]

Ver imagen AryehR434841
Ver imagen AryehR434841