Respuesta :

A)

[tex]\begin{gathered} \frac{x^2-x-2}{x^4-5x^2+4} \\ factor\text{ }x^2-x-2 \\ \frac{\left(x+1\right)\left(x-2\right)}{x^4-5x^2+4} \\ factor\text{ }x^4-5x^2+4 \\ \frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)} \\ We\text{ remove common terms }x+1 \\ \frac{x-2}{\left(x-1\right)\left(x+2\right)\left(x-2\right)} \\ We\text{ remove common terms x-2} \\ \frac{1}{(x-1)(x+2)} \end{gathered}[/tex]

B)

[tex]\begin{gathered} \frac{8x^3-7x-1}{x^4-4x^2+3} \\ \text{factor }8x^3-7x-1 \\ \frac{\left(x-1\right)\left(8x^2+8x+1\right)}{x^4-4x^2+3} \\ \text{factor }x^4-4x^2+3 \\ \frac{\left(x-1\right)\left(8x^2+8x+1\right)}{\left(x+1\right)\left(x-1\right)\left(x^2-3\right)} \\ We\text{ remove common terms x-1} \\ \frac{8x^2+8x+1}{\left(x+1\right)\left(x^2-3\right)} \end{gathered}[/tex]