QuestionThe unknown triangle ABC has angle A = 56° and sides a = 32 and c = 34. How many solutions are there for triangleABC? if there are infinitely many, enter oo.

Respuesta :

The law of sines is a theorem for triangle which states that for a triangle with sides a,b,c and angle A,B,C

[tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

Where,

a=32

A=56

c=34

[tex]\begin{gathered} \frac{32}{\sin56}=\frac{b}{\sin B}=\frac{34}{\sin C} \\ \frac{32}{\sin56}=\frac{34}{\sin C} \\ \sin C=\frac{34\times\sin 56}{32} \\ \sin C=0.881 \end{gathered}[/tex][tex]\begin{gathered} \frac{b}{\sin B}=38.598 \\ b=38.598\sin B \\ \frac{b}{\sin B}=\frac{34}{\sin C} \\ \frac{38.598\sin B}{\sin B}=\frac{34}{0.811} \\ 38.598\ne41.92 \end{gathered}[/tex]

For b and B is not full fill the condition of traiangle so zero triangle from ABC.