Respuesta :

[tex]\frac{167}{30}yx^2-\frac{65}{28}y^2x+\frac{3}{4}xy[/tex]

Explanation

[tex]\frac{11}{2}x^2y-\frac{9}{4}xy^2+\frac{1}{4}xy-\frac{1}{14}y^2x+\frac{1}{15}yx^2+\frac{1}{2}xy[/tex]

Step 1

group similar terms

[tex]\begin{gathered} \frac{11}{2}x^2y-\frac{9}{4}xy^2+\frac{1}{4}xy-\frac{1}{14}y^2x+\frac{1}{15}yx^2+\frac{1}{2}xy \\ (\frac{11}{2}x^2y+\frac{1}{15}yx^2)+(-\frac{9}{4}xy^2-\frac{1}{14}y^2x)+(\frac{1}{2}xy+\frac{1}{4}xy) \end{gathered}[/tex]

Step 2

add similar terms

[tex]\begin{gathered} (\frac{11}{2}x^2y+\frac{1}{15}yx^2)+(-\frac{9}{4}xy^2-\frac{1}{14}y^2x)+(\frac{1}{2}xy+\frac{1}{4}xy) \\ (\frac{11}{2}+\frac{1}{15})(yx^2)+(-\frac{9}{4}-\frac{1}{14})(y^2x)+(\frac{1}{2}+\frac{1}{4})(xy) \\ \frac{167}{30}yx^2-\frac{65}{28}y^2x+\frac{3}{4}xy \end{gathered}[/tex]