You are sitting at your dinner table and noticed three peas have fallen off of your plate as shown. Each Pea has a mass of 0.22 g and D= 3.6 cm. I got part A that is 2.73×10-15th but part B I need help finding the direction (CCW from the +x axis) of the net gravitational force on the pea labeled M1

You are sitting at your dinner table and noticed three peas have fallen off of your plate as shown Each Pea has a mass of 022 g and D 36 cm I got part A that is class=

Respuesta :

In order to find the direction of the net gravitational force, let's draw the forces acting on m1:

The direction F13 is pointing is given by:

[tex]\begin{gathered} \tan (\theta)=\frac{2d}{d} \\ \tan (\theta)=2 \\ \theta=\tan ^{-1}(2) \\ \theta=63.435\degree \end{gathered}[/tex]

Let's find the forces F12 and F13, and decompose the second one in its horizontal and vertical components using this angle:

[tex]\begin{gathered} F12=\frac{G\cdot M\cdot m}{d^2}=\frac{6.674\cdot10^{-11}\cdot0.22\cdot10^{-3}\cdot0.22\cdot10^{-3}}{(3.6\cdot10^{-2})^2}=2.49\cdot10^{-15} \\ F13=\frac{G\cdot M\cdot m}{(\sqrt[]{d^2+(2d)^2_{}})^2_{}}=\frac{6.674\cdot10^{-11}\cdot0.22\cdot10^{-3}\cdot0.22\cdot10^{-3}}{5\cdot(3.6\cdot10^{-2})^2}=4.98\cdot10^{-16} \\ F13_x=F13\cdot\sin (\theta)=4.98\cdot10^{-16}\cdot\sin (63.435\degree)=4.45\cdot10^{-16} \\ F13_y=F13\cdot\cos (\theta)=4.98\cdot10^{-16}\cdot\cos (63.435\degree)=2.23\cdot10^{-16} \end{gathered}[/tex]

Adding the vertical forces, we have:

[tex]F_y=F13_y+F12=2.23\cdot10^{-16}+24.9\cdot10^{-16}=27.13\cdot10^{-16}=2.713\cdot10^{-15}[/tex]

Finally, the direction of the net force is given by:

(Let's use a negative Fy, since it's pointing down)

[tex]\begin{gathered} \theta=\tan ^{-1}(\frac{F_y}{F_x})=\tan ^{-1}(\frac{F_y}{F13_x}) \\ =\tan ^{-1}(\frac{-2.713\cdot10^{-15}}{0.445\cdot10^{-15}}) \\ =\tan ^{-1}(-6.0966) \\ =-80.68\degree \end{gathered}[/tex]

Ver imagen MayerliJ68133
Ver imagen MayerliJ68133