Respuesta :

Answer:

The focus is at;

[tex](-2,2)[/tex]

Explanation:

Given the parabola equation;

[tex](x+2)^2=4(y-1)[/tex]

Recall that the standard parabola equation can be written as;

[tex]\begin{gathered} (x-h)^2=4p(y-k) \\ \text{where the focus is at;} \\ f=(h,k+p) \end{gathered}[/tex]

For the given equation;

[tex]\begin{gathered} h=-2 \\ k=1 \\ p=1 \end{gathered}[/tex]

so, the focus would be;

[tex]\begin{gathered} f=(h,k+p) \\ f=(-2,1+1) \\ f=(-2,2) \end{gathered}[/tex]

Therefore, the focus is at;

[tex](-2,2)[/tex]