Respuesta :

Using the binomial theorem:

[tex](a+b)^n=\Sigma(\frac{n}{i})a^{n-i}*b^i[/tex]

In this case n=17; a=x and b=3, the sum starts in i=0 until n.

And :

[tex]\begin{bmatrix}{n} & {\placeholder{⬚}} \\ {i} & {\placeholder{⬚}}\end{bmatrix}=\frac{n!}{(n-i)!*i!}[/tex]

Substituing the values:

First term: i=0.

[tex](x+3)^{17}=x^{17-0}*3^0*\frac{17!}{(17-0)!*0!}=x^{17}*\frac{17!}{17!}=x^{17}[/tex]

Remember that 0!=1.

Second term: i=1

[tex]x^{17-1}*3^1*\frac{17!}{(17-1)!*1!}=x^{16}*3*\frac{17*16!}{16!}=x^{16}*3*17=51x^{16}[/tex]

Third term: i=2.

[tex]\begin{gathered} x^{17-2}*3^2*\frac{17!}{(17-2)!*2!}=x^{15}*9*\frac{17*16*15!}{15!*2!} \\ =x^{15}*9*\frac{17*16}{2}=1224x^{15} \end{gathered}[/tex]

Answer:

x^17 + 51*x^16 + 1224*x^15.