The pressure of the reading of tube is given as,
[tex]\begin{gathered} P=15\text{ mm} \\ P=0.02\text{ atm} \end{gathered}[/tex]The relation between the before and after pressure is,
[tex]P^{\prime}=(\frac{v_2}{v_1^{}})^2P[/tex]where v1 is the velocity of the speed initially, and v2 is the velocity at the final state.
Substituting the known values,
[tex]\begin{gathered} P^{\prime}=(\frac{700}{200})^2\times0.02 \\ P^{\prime}=0.245\text{ atm} \\ P^{\prime}=24.5\times10^{-3}Nmm^{-2} \\ P^{\prime}=24.5\times10^3Nm^{-2} \end{gathered}[/tex]Thus, the final pressure reading of the pilot tube is
[tex]24.5\times10^3Nm^{-2}[/tex]