ANSWER:
a) 316.7 N*m
b) 59.9 N*m
STEP-BY-STEP EXPLANATION:
Given:
Length of side (x) = 18 cm = 0.18 m
Number of turns in loop (N) = 130
Current (I) = 47 A
Magnetic field (B) = 1.6 T
The formula to find the torque is:
[tex]\tau=N\cdot I\cdot A\cdot B\cdot\sin\theta[/tex]a)
We calculate the area of the square loop like this:
[tex]\begin{gathered} A=x^2 \\ \\ \text{ we replacing:} \\ \\ A=(0.18)^2 \\ \\ A=0.0324\text{ m}^2 \end{gathered}[/tex]The maximum torque occurs when the angle is 90°, therefore:
[tex]\begin{gathered} \tau_{max}=(130)(47)(0.0324)(1.6)\cdot\sin90\degree \\ \\ \tau_{max}=316.7\text{ Nm} \end{gathered}[/tex]
b)
We use the formula again with the same data but now the angle is equal to 10.9°, like this:
[tex]\begin{gathered} \tau=\left(130\right)\left(47\right)\left(0.0324\right)\left(1.6\right)\cdot\sin10.9\degree \\ \\ \tau=59.9\text{ Nm} \end{gathered}[/tex]