A sector with a radius of \maroonD{10\,\text{cm}}10cmstart color #ca337c, 10, start text, c, m, end text, end color #ca337c has a central angle measure of \purpleD{252\degree}252°start color #7854ab, 252, degree, end color #7854ab.

Given: A sector with
[tex]\begin{gathered} radius=10cm \\ sectorangle(\theta)=252^0 \end{gathered}[/tex]To Determine: The area of the sector
Solution
The area of a sector is given as
[tex]\begin{gathered} AS=\frac{\theta}{360^0}\times\pi r^2 \\ AS=Area\text{ of sector} \end{gathered}[/tex]Substitute the given into the formula
[tex]\begin{gathered} AS=\frac{252}{360}\times\pi\times10^2 \\ AS=0.7\times100\pi \\ AS=70\pi cm^2 \\ AS=219.91cm^2 \end{gathered}[/tex]Hence, the area of the sector is 70πcm² or 219.91cm^2