Respuesta :

Th given terms is,

[tex]37,\ldots,333_{}[/tex]

Let 37 be the first term and 333 be the third term of a GP series.

[tex]\begin{gathered} a_1=\frac{a}{r}=37 \\ a_2=a=x \\ a_3=ar=333 \end{gathered}[/tex]

Here, a is the second term x.

The product of the first and the third term is,

[tex]\begin{gathered} a_1\times a_3=\frac{a}{r}\times(ar) \\ 37\times333=a^2 \\ a^2=12321 \\ a=\sqrt[]{12321} \\ a=\pm111 \end{gathered}[/tex]

Thus, the possible values of the second term is 111 or -111.