Find the inverse of the function below. When typing your answer use the "^" key (shift+6) to indicate an exponent. For example, if we have x squared (x times x) we would type x^2.()=9+4−4‾‾‾‾‾‾√f(x)=9+4x−4The numerator of −1()f−1(x) is Answer -Answer +Answer The denominator of −1()f−1(x) is Answer

Find the inverse of the function below When typing your answer use the key shift6 to indicate an exponent For example if we have x squared x times x we would ty class=

Respuesta :

Given:

There are given that the function to find the inverse is:

[tex]f(x)=9+\sqrt[]{4x-4}[/tex]

Explanation:

To find the inverse of the given function, first, we need to exchange f(x) into y, then exchange the variable which means change y to x and x to. Then, find the value of y.

Now,

Step 1:

Exchange f(x) into y:

[tex]\begin{gathered} f(x)=9+\sqrt[]{4x-4} \\ y=9+\sqrt[]{4x-4} \end{gathered}[/tex]

Step 2:

Exchange the variables which means exchange y into x and x into y:

[tex]\begin{gathered} y=9+\sqrt[]{4x-4} \\ x=9+\sqrt[]{4y-4} \end{gathered}[/tex]

Step 3:

Solve the above function for the value of y:

So,

[tex]\begin{gathered} x=9+\sqrt[]{4y-4} \\ x=9+2\sqrt[]{(y-1)} \\ 2\sqrt[]{(y-1)}=x-9 \\ \sqrt[]{(y-1)}=\frac{x-9}{2} \end{gathered}[/tex]

Then,

[tex]\begin{gathered} \sqrt[]{(y-1)}=\frac{x-9}{2} \\ (y-1)^{\frac{1}{2}}=\frac{x-9}{2} \\ y-1=(\frac{x-9}{2})^2 \\ y=(\frac{x-9}{2})^2+1 \end{gathered}[/tex]

Then,

[tex]\begin{gathered} y=(\frac{x-9}{2})^2+1 \\ y=\frac{x^2-18x+81}{4}^{}+1 \\ y=\frac{x^2-18x+81+4}{4} \\ f^{-1}(x)=\frac{x^2-18x+85}{4} \end{gathered}[/tex]

Final answer:

Hence, the numerator of the inverse function and the denominator of the inverse function are shown below:

[tex]\begin{gathered} \text{The numerator of f}^{-1}(x)\text{ = }x^2-18x+85 \\ \text{The denominator of f}^{-1}(x)\text{ = 4} \end{gathered}[/tex]