Find the standard form of the equation of the ellipse satisfying the given conditions.Endpoints of major axis: (4,12) and (4,0)Endpoints of minor axis: (8,6) and (0,6)

The Standard form of the ellipse is given as,
[tex]\frac{(x-a)^2}{a^2}+\text{ }\frac{(y-b)^2}{b^2}\text{ = 1}[/tex]The length of the major axis is given as,
[tex]\begin{gathered} 2a\text{ = 8} \\ a\text{ = }\frac{8}{2} \\ a\text{ = 4} \end{gathered}[/tex]The length of the minor axis is given as,
[tex]\begin{gathered} 2b\text{ = 12} \\ b\text{ = }\frac{12}{2} \\ b\text{ = 6} \end{gathered}[/tex]Therefore the required equation is calculated as,
[tex]\begin{gathered} \frac{(x-4)^2}{4^2}\text{ + }\frac{(y-6)^2}{6^2}\text{ = 1} \\ \frac{(x-4)^2}{16^{}}\text{ + }\frac{(y-6)^2}{36^{}}\text{ = 1} \end{gathered}[/tex]