Use Point P to find the length of the arc. Round to the nearest hundredth

Answer:
(a)3.67 Inches
(b)17.45 feet
Explanation:
Part 1
If FI=12 yards, then:
• Radius, r= 6 yards
The measure of the central angle at GF=35 degrees
[tex]\begin{gathered} \text{Length of an arc=}\frac{\theta}{360}\times2\pi r \\ \theta=\text{Central Angle} \\ r=\text{Radius} \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} \text{Length of arc GF=}\frac{35}{360}\times2\times\pi\times6 \\ =3.67\text{ inches (to the nearest hundredth)} \end{gathered}[/tex]Part 2
If PH=8 feet, then:
• Radius, r= 8 feet
The measure of the central angle at FH=35+90=125 degrees
Therefore:
[tex]\begin{gathered} \text{Length of arc FH=}\frac{125}{360}\times2\times\pi\times8 \\ =17.45\text{ f}eet\text{ (to the nearest hundredth)} \end{gathered}[/tex]