Answer:
Explanation:
First, we solve the value/s of x to make a graph for the equation:
[tex]2|x-1|+3\leq9[/tex]So,we add -3 to both sides:
2|x-1|+3-3≤9-3
Simplify
2|x-1|≤6
[tex]\begin{gathered} \text{Divide both sides by 2} \\ \frac{2|x-1|}{2}\leq\frac{6}{2} \\ \text{Simplify} \\ |x-1|\leq3 \end{gathered}[/tex]Then, we apply the absolute rule: If |u|≤a, a>0 then -a≤u≤a.
[tex]\begin{gathered} -3\leq x-1\leq3 \\ We\text{ add 1 to the whole equation to get the value of x} \\ -3+1\leq x-1+1\leq3+1 \\ \text{Simplify} \\ -2\leq x\leq4 \end{gathered}[/tex]The values are:
x≤ 4 and x ≥ -2
Therefore, the graph is: