Respuesta :

We are required to find the equation of a straight line passing through two given points .

First we can calculate the gradient / slope

[tex]\begin{gathered} x_1=-2 \\ y_1=3 \\ x_2=4 \\ y_2=15 \end{gathered}[/tex]

Calculating slope(m) below

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex][tex]\begin{gathered} m=\frac{15-3}{4-(-2)} \\ m=\frac{12}{6} \\ m=2 \end{gathered}[/tex]

Using the formula y = mx + c at the point any of the two given points .... we can use ( 4 , 15 ) ... we have

[tex]\begin{gathered} y=2x+c \\ x=4,y=15 \\ 15=2(4)+c \\ 15=8+c \\ c=7 \end{gathered}[/tex]

The required straight line equation will be obtained using y=mx+c as;

[tex]y=2x+7[/tex]

Here is a graph of the line

Hence the equation of the line is y=2x + 7

Ver imagen ShepK775843