Triangles ABE, ADE, and CBE are shown on the coordinate grid, and all the vertices have coordinates that are integers00С2E3402A-2Which statement is true?No two triangles are congruent.Only Triangles ABE and CBE are congruent.only triangles ABE and ADE are congruenttriangles ABE, ADE, and CBE are all congruent

Triangles ABE ADE and CBE are shown on the coordinate grid and all the vertices have coordinates that are integers00С2E3402A2Which statement is trueNo two trian class=
Triangles ABE ADE and CBE are shown on the coordinate grid and all the vertices have coordinates that are integers00С2E3402A2Which statement is trueNo two trian class=

Respuesta :

AThe coordinates of the triangles are given below

[tex]\begin{gathered} A=(-4,-1) \\ B=(-1,3) \\ C=(4,3) \\ D=(-1,1) \\ E=(0,1) \end{gathered}[/tex]

Considering the two triangles ABE and CBE

[tex]\begin{gathered} AB=\sqrt[]{(-1-(-4)^2+(3-(-1)^2} \\ AB=\sqrt[]{3^2+4^2} \\ AB=\sqrt[]{9+16} \\ AB=\sqrt[]{25} \\ AB=5 \end{gathered}[/tex][tex]\begin{gathered} AE=\sqrt[]{(0-(-4)^2+(1-(-1)^2} \\ AE=\sqrt[]{4^2+2^2} \\ AE=\sqrt[]{16+4} \\ AE=\sqrt[]{20} \end{gathered}[/tex][tex]\begin{gathered} BE=\sqrt[]{(0-(-1)^2+(1-3)^2} \\ BE=\sqrt[]{1^2+(-2)^2} \\ BE=\sqrt[]{1+4} \\ BE=\sqrt[]{5} \end{gathered}[/tex][tex]\begin{gathered} CB=\sqrt[]{(4-(-1)^2+(3-3)^2} \\ CB=\sqrt[]{(4+1)^2}+0 \\ CB=5 \end{gathered}[/tex][tex]\begin{gathered} CE=\sqrt[]{(4-0)^2+}((3-1)^2 \\ CE=\sqrt[]{4^2+2^2} \\ CE=\sqrt[]{16+4} \\ CE=\sqrt[]{20} \end{gathered}[/tex][tex]\begin{gathered} BE=\sqrt[]{(-1-0)^2+(3-1)^2} \\ BE=\sqrt[]{(-1)^2+2^2} \\ BE=\sqrt[]{1+4} \\ BE=\sqrt[]{5} \end{gathered}[/tex]

Consider triangle ADE

[tex]\begin{gathered} AE=\sqrt[]{(0-(-4)^2+(1-(-1)^2} \\ AE=\sqrt[]{4^2+2^2} \\ AE=\sqrt[]{16+4} \\ AE=\sqrt[]{20} \end{gathered}[/tex][tex]\begin{gathered} AD=\sqrt[]{(-4-1)^2+(-1-(-1)^2} \\ AD=\sqrt[]{(-5)^2} \\ AD=\sqrt[]{25} \\ AD=5 \end{gathered}[/tex][tex]\begin{gathered} DE=\sqrt[]{(1-0)^2+(-1-1)^2} \\ DE=\sqrt[]{1^2+(-2)^2} \\ DE=\sqrt[]{1+4} \\ DE=\sqrt[]{5} \end{gathered}[/tex]

From the calculation above,

we can conclude that ABE, CBE and ADE are all CONGRUENT