Respuesta :

The area of the triangle is 96.1

STEP- BY - STEP EXPLANATION

What to find?

Area of the triangle ABC.

Given:

a = 13, b = 17, c = 26

To find the area of triangle ABC, follow the steps below:

Step 1

Since, the height of the triangle is not given, we will need to use Heron's formula.

Recall the Heron's formula below;

[tex]\text{Area}=\sqrt[]{p(p-a)(p-b)(p-c)}[/tex]

Where P is half of the perimeter of the triangle.

a, b and c are the sides of the triangle.

Step 2

Find the value of P.

From the definition of p,

[tex]P=\frac{a+b+c}{2}[/tex][tex]\begin{gathered} P=\frac{13+17+26}{2} \\ \\ =\frac{56}{2} \\ \\ =28 \end{gathered}[/tex]

Step 3

Substitute the values into the Heron's formula.

[tex]\text{Area}=\sqrt[]{28(28-13)(28-17)(28-26)}[/tex]

Step 4

Simplify the resultant in step 3.

[tex]\begin{gathered} \text{Area}=\sqrt[]{28\times15\times11\times2} \\ \\ =\sqrt[]{9240} \\ \approx96.1 \end{gathered}[/tex]

Therefore, the area of the traingle is 96.1