58.18 in³
1) Since the volume of a Sphere can be found by
[tex]\begin{gathered} V=\frac{4}{3}\cdot\pi.r^3 \\ V=\frac{4}{3}\cdot\pi.\text{ (}\frac{5}{3})^3 \\ V=\frac{4}{3}\cdot\pi\cdot\frac{125}{9} \\ V=\frac{500}{27}\pi\text{ }\approx58.18 \end{gathered}[/tex]2) SO the volume of that Sphere is approximately 58.18 in³