Respuesta :

[tex]A\text{ . }y=10000-250x[/tex]

Explanation

Step 1

find the slope of the line:

if you know 2 poitns(P1 and P2) of a lines, you can easily find the slope using:

[tex]\begin{gathered} \text{slope}=m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}[/tex]

then, pick 2 points from the line in the graph

Let

P1(0,10000)

P2(40,0)

replace,

[tex]\begin{gathered} m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}=\frac{0-10000}{40-0}=\frac{-10000}{40}=-250 \\ \text{slope}=-250 \end{gathered}[/tex]

Step 2

Now, find the equation of the line,using:

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{where} \\ P1(x_1,y_1) \end{gathered}[/tex]

Let

P1(0,10000)

replace,

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-10000=-250(x-0) \\ y-10000=-250x \\ \text{add 10000 in both sides} \\ y-10000+10000=-250x+10000 \\ y=10000-250x \end{gathered}[/tex]

I hope this helps you