Respuesta :

Given that slope =0.06.

The triangle is a right-angled triangle with base x and height y.

Here r is the length of the deck of the bridge.

y=the exact rise of the bridge.

x= the run of the bridge,

[tex]\text{Slope =}\frac{y}{x}=0.06[/tex]

[tex]\text{Slope =}\frac{y}{x}=\frac{6}{100}=\frac{3}{50}[/tex]

By using the Pythagorean theorem, we get the length r as follows.

[tex]r=\sqrt[]{x^2+y^2}[/tex]

Substitute x=50 and y=3, we get

[tex]r=\sqrt[]{50^2+3^2}=\sqrt[]{2500+9}=\sqrt[]{2509}=50.089[/tex]

The length of the bridge is 50.09.

Ver imagen JerelleO727156