Respuesta :

Given:

[tex]\theta=\frac{\pi}{3}radians[/tex]

Required:

To find the value of

[tex]\cos\theta,\sin\theta[/tex]

Explanation:

Now

[tex]\begin{gathered} \cos(\frac{\pi}{3}rad)=\cos(\frac{\pi}{3}\times\frac{180}{\pi}) \\ \\ =\cos(\frac{180}{3}) \\ \\ =\cos60 \\ \\ =0.5 \end{gathered}[/tex][tex]\begin{gathered} \sin(\frac{\pi}{3}rad)=\sin60 \\ \\ =\frac{\sqrt{3}}{2} \\ \\ =0.87 \end{gathered}[/tex]

Final Answer:

[tex]\begin{gathered} \cos(\frac{\pi}{3}rad)=0.5 \\ \\ \sin(\frac{\pi}{3}rad)=\frac{\sqrt{3}}{2} \end{gathered}[/tex]