Respuesta :

A perfect square trinomial is of the form

[tex](px+q)^2=p^2x^2+2pqx+q^2[/tex]

Consider

[tex]16m^2+48m+36[/tex]

This satisfies for p = 4 and q = 6. Hence it is a perfect square trinomial.

Consider

[tex]25a^2-45a+81[/tex]

This not satisfies as if we compare

[tex]\begin{gathered} a^2=25\Rightarrow a=5 \\ b^2=81\Rightarrow b=9 \end{gathered}[/tex]

but

[tex]2ab=2\cdot5\cdot9=90\ne45[/tex]

Hence it is not a perfect square trinomial.

Consider

[tex]9z^4+30z^2+25[/tex]

It can be written as

[tex]9(z^2)^2+30(z^2)+25[/tex]

Let

[tex]u=z^2[/tex]

Then the trinomial becomes

[tex]9u^2+30u+25[/tex]

This satisfies for p = 3 and q = 5. Hence it is a perfect square trinomial.

Consider

[tex]x^2-10x-16[/tex]

It is not in the perfect square trinomial form.

Hence it is not a perfect square trinomial.