Respuesta :

Given:

[tex]8-2(2x+9)<42[/tex]

Step 1:

Collect like terms

Thus, we have

[tex]\begin{gathered} -2(2x+9)<42-8 \\ -2(2x+9)<34 \end{gathered}[/tex]

Step 2:

Open the brackets in the Left Hand Side of the inequality.

[tex]\begin{gathered} -2(2x+9)<34 \\ -2(2x)+(-2(9))<34 \\ \Rightarrow-4x-18<34 \end{gathered}[/tex]

Step 3:

Collect like terms

[tex]\begin{gathered} -4x-18<34 \\ -4x<34+18 \\ -4x<52 \end{gathered}[/tex]

Step 4:

Divide both sides of the inequality by the coefficient of x.

The coefficient of x is -4.

Thus,

[tex]\begin{gathered} \frac{-4x}{-4}<\frac{52}{-4} \\ \Rightarrow x>-13 \end{gathered}[/tex]

When the coefficient of an unknown is a negative number, and is to be used to divide both sides of the inequality, the signs are changed.

Thus, the solution to the inequality is

[tex]x>-13[/tex]