Respuesta :

Answer:

[tex]\begin{gathered} \text{Slope}-\text{intercept: }y=-\frac{1}{2}x+1 \\ \text{ Point-slope form: y-2=-}\frac{1}{2}(x+2) \\ \text{ Standard form: x+2y=2} \end{gathered}[/tex]

Explanations:

The given functions can be generalized using the form f(x) = y

Given the following functions;

[tex]\begin{gathered} f(-2)=2 \\ f(8)=-3 \end{gathered}[/tex]

These functions can be written as coordinates points (-2, 2) and (8, -3)

The equation of the linear function in slope-intercept form is expressed as y = mx + b

m is the slope:

b is the y-intercept

Get the slope of the line passing through the points:

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{-3-2}{8-(-2)} \\ m=\frac{-5}{8+2} \\ m=-\frac{5}{10} \\ m=-\frac{1}{2} \end{gathered}[/tex]

Get the y-intercept using the point(-2, 2) and m = -0.5

[tex]\begin{gathered} y=mx+b \\ 2=-0.5(-2)+b \\ 2=1+b \\ b=2-1 \\ b=1 \end{gathered}[/tex]

Write the equation in slope-intercept form where m = -0.5 and b = 1;

[tex]y=-\frac{1}{2}x+1[/tex]

Write in point-slope form;

The point-slope form of the equation is expressed as;

[tex]y-y_1=m(x-x_1)[/tex]

Using the following parameters;

[tex]\begin{gathered} m=-\frac{1}{2} \\ (x_1,y_1)=(-2,2) \end{gathered}[/tex]

Substitute the given parameters into the point-slope form of the equation;

[tex]\begin{gathered} y-2=-\frac{1}{2}(x-(-2)_{}) \\ y-2=-\frac{1}{2}(x+2) \end{gathered}[/tex]

This gives the point-slope form of the equation.

For the standard form:

The standard form of the linear equation is expressed as:

[tex]Ax+By=C[/tex]

Recall that;

[tex]y=-\frac{1}{2}x+1[/tex]

Rearrange in standard form as shown:

[tex]\begin{gathered} 2y=-x+2 \\ \end{gathered}[/tex]

Add "x" to both sides of the equation:

[tex]\begin{gathered} 2y+x=-x+x+2 \\ 2y+x=2 \\ x+2y=2 \end{gathered}[/tex]

This gives the required linear equation in standard form.