Respuesta :

Given complex numbers are,

[tex](-2+3i),(4-5i)[/tex]

To find the product of the given complex numbers,

[tex]\begin{gathered} (-2i+3i)(4-5i)=-2i\times4+(-2i)(-5i)+3i\times4+3i(-5i) \\ \text{ =}-8i+10i^2+12i-15i^2 \end{gathered}[/tex]

Now subsitute the value of ,

[tex]i^2=-1[/tex]

So we get,

[tex]\begin{gathered} -8i+10i^2+12i-15i^2=-8i+10(-1)+12i-15(-1) \\ \text{ =-8i-10+12i+15} \end{gathered}[/tex]

Now add the like terms,

[tex]-8i+12i+15-10=4i+5[/tex]

So the required value is in the form,

[tex]a+ib=4i+5[/tex]